The Evolutionary History of Nebraska Deer Mice: Local Adaptation in the Face of Strong Gene Flow.

نویسندگان

  • Susanne P Pfeifer
  • Stefan Laurent
  • Vitor C Sousa
  • Catherine R Linnen
  • Matthieu Foll
  • Laurent Excoffier
  • Hopi E Hoekstra
  • Jeffrey D Jensen
چکیده

The interplay of gene flow, genetic drift, and local selective pressure is a dynamic process that has been well studied from a theoretical perspective over the last century. Wright and Haldane laid the foundation for expectations under an island-continent model, demonstrating that an island-specific beneficial allele may be maintained locally if the selection coefficient is larger than the rate of migration of the ancestral allele from the continent. Subsequent extensions of this model have provided considerably more insight. Yet, connecting theoretical results with empirical data has proven challenging, owing to a lack of information on the relationship between genotype, phenotype, and fitness. Here, we examine the demographic and selective history of deer mice in and around the Nebraska Sand Hills, a system in which variation at the Agouti locus affects cryptic coloration that in turn affects the survival of mice in their local habitat. We first genotyped 250 individuals from 11 sites along a transect spanning the Sand Hills at 660,000 single nucleotide polymorphisms across the genome. Using these genomic data, we found that deer mice first colonized the Sand Hills following the last glacial period. Subsequent high rates of gene flow have served to homogenize the majority of the genome between populations on and off the Sand Hills, with the exception of the Agouti pigmentation locus. Furthermore, mutations at this locus are strongly associated with the pigment traits that are strongly correlated with local soil coloration and thus responsible for cryptic coloration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive evolution of multiple traits through multiple mutations at a single gene.

The identification of precise mutations is required for a complete understanding of the underlying molecular and evolutionary mechanisms driving adaptive phenotypic change. Using plasticine models in the field, we show that the light coat color of deer mice that recently colonized the light-colored soil of the Nebraska Sand Hills provides a strong selective advantage against visually hunting pr...

متن کامل

The role of isoforms in the evolution of cryptic coloration in Peromyscus mice.

A central goal of evolutionary biology is to understand the molecular mechanisms underlying phenotypic adaptation. While the contribution of protein-coding and cis-regulatory mutations to adaptive traits has been well documented, additional sources of variation - such as the production of alternative RNA transcripts from a single gene, or isoforms - have been understudied. Here, we focus on the...

متن کامل

Genetic and Ecotypic Differentiation in a Californian Plant Polyploid Complex (Grindelia, Asteraceae)

Studies of ecotypic differentiation in the California Floristic Province have contributed greatly to plant evolutionary biology since the pioneering work of Clausen, Keck, and Hiesey. The extent of gene flow and genetic differentiation across interfertile ecotypes that span major habitats in the California Floristic Province is understudied, however, and is important for understanding the prosp...

متن کامل

On the origin and spread of an adaptive allele in deer mice.

Adaptation is a central focus of biology, although it can be difficult to identify both the strength and agent of selection and the underlying molecular mechanisms causing change. We studied cryptically colored deer mice living on the Nebraska Sand Hills and show that their light coloration stems from a novel banding pattern on individual hairs produced by an increase in Agouti expression cause...

متن کامل

The role of environments with extreme ecological conditions in the reductive evolutionary development processes of animal

Different groups of animals show phenotypic characters, which have been resulted by the reductive phenomena. The examples are the absence of pigmentation; dwindle of eyes in some cave-living animals, and also the absence of scale in some fishes. These characters are often leaded to evolution of new species with special adaptation that is so called "Regressive evolution". The reductive phenomena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 35 4  شماره 

صفحات  -

تاریخ انتشار 2017